
Total synthesis of coronafacic acid through 6-endo-trig mode
intramolecular cyclization of an enone-aldehyde to a

hydrindanone using samarium(II) iodide

Masakazu Sono, Atsuko Hashimoto, Katsuyuki Nakashima and Motoo Tori*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro cho, Tokushima 770-8514, Japan

Received 17 April 2000; revised 10 May 2000; accepted 12 May 2000

Abstract

Coronafacic acid has been synthesized from a hydrindanone prepared by a 6-endo-trig mode cyclization
reaction of the enone-aldehyde with samarium(II) iodide. The stereochemistry of the hydrindanone was
controlled by the coordinated samarium species resulting in cis in respect of the hydroxyl group at C-4 and
the juncture proton at C-3a. # 2000 Elsevier Science Ltd. All rights reserved.
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We have previously reported an intramolecular cyclization reaction of an aldehyde and a,b-
unsaturated ketone using samarium(II) iodide.1ÿ6 The reaction depends on the following conditions:
with or without a proton source and/or HMPA resulting in formation of hydridanones with trans
or cis selectivity in respect of the hydroxyl group at C-4 and the juncture proton at C-3a.1,2 We
have now successfully applied this reaction to the synthesis of coronafacic acid.7

Coronafacic acid (1) is itself a natural product isolated from the culture broth of Pseudomonas
syringae by Ichihara and his group in 1977.7 It has a cis-fused hydrindanone moiety (H-3a and H-
7a) with an ethyl group at C-6 and a trisubstituted double bond (�4,5).7 The synthesis of this
compound has been reported by several groups.8ÿ21 The cyclization of the cyclopentenone derivative
3 to ketol 2 is the key step of this synthesis. The stereochemical problem is to adjust the stereo-
chemistry at both the C-3a and C-7a positions relative to the ethyl group. However, this inversion
may be feasible by the base-catalyzed equilibration (Scheme 1).
The precursor for the cyclization was prepared starting from 4-ethylcyclohexanol (4) (Scheme 2).

Jones oxidation, Baeyer±Villiger oxidation, methanolysis, protection with the THP ether, and
LiAlH4 reduction a�orded alcohol 5 in 57% yield (®ve steps). Swern oxidation and the Grignard
reaction with the C3 unit, followed by deprotection of the TBDMS ether, yielded diol 6 in 60%
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yield (three steps). Swern oxidation into keto-aldehyde, KOH-catalyzed intramolecular aldol
cyclization, and deprotection of the THP ether gave alcohol 7 in 47% yield (two steps). Swern
oxidation of 7 a�orded the desired enone-aldehyde 3 in 72% yield.

The enone-aldehyde 3 was treated with SmI2 in anhydrous THF at 0�C to yield a mixture of
four stereoisomers of hydrindanones, the composition of which was determined by GC±MS
(Scheme 3).22 Separation of this mixture a�orded alcohol 2 as a major product.22 Treatment of 2

Scheme 2. (a) Jones' oxidation; (b) mCPBA, CH2Cl2, re¯ux, 4 h; (c) NaOMe, MeOH, rt, 2 h; (d) DHP, PPTS, CH2Cl2,

rt, 10 h; (e) LAH, ether, rt, 10 h (®ve steps 75%); (f) Swern oxidation; (g) BrMgCH2CH2CH2OTBDMS, THF, rt, 10 h;
(h) TBAF, THF, rt, 2 h (three steps 66%); (i) Swern oxidation; (j) 5% KOH, MeOH, rt, 10 h; then 1 M HCl (two steps
47%); (k) Swern oxidation (72%)

Scheme 1. Synthetic plan

Scheme 3. (a) Sml2 (3 equiv.), 0�C, THF (61%); (b) HOCH2CH2OH, TsOH, PhH (56%); (c) PDC, CH2Cl2, rt, 5 h
(quant.); (d) K2CO3, MeOH, re¯ux, 10 h (50%); (e) LDA, Cl-Py-N(Tf)2, THF, ^78�C (70%); (f) CO, Pd(OAc)2, PPh3,
Et3N, MeOH, DMF (58%); (g) 3 M HCl (80%)
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with ethyleneglycol in the presence of TsOH a�orded epimerized ketal 8, stereochemistry of
which was determined by the NOESY spectrum.23 After oxidation of 8, the resulting ketone 9
was subjected to base-catalyzed equilibration (KOH±MeOH) to give cis-hydrindanone 10 along
with the starting ketone 9 in the ratio of 10:9=50:27. The ketone 10 was treated with LDA fol-
lowed by chloropyridine tri¯ate24 at ^78�C to provide a tri-substituted enol tri¯ate in 70% yield.
The palladium chemistry of carboxylation under standard conditions25 a�orded the correspond-
ing methyl ester in 58% yield, which was hydrolyzed with 1 M aqueous HCl under re¯ux to yield
coronafacic acid (1) in 80% yield.7 The spectral data and mp (121±124�C) [lit. 125±128�C]7 were
identical with those of the natural product.
Herein we have demonstrated a new route to the hydrindanones by a 6-endo-trig mode of intra-

molecular cyclization using SmI2 and its successful application to the total synthesis of coronafacic
acid (1).
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